by Ajaz Hussain^a), Shagufta Perveen^a), Abdul Malik*^a), Amna Nisar Khan^a), and Rasool Bakhsh Tareen^b)

 a) International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan (phone: +92-21-4824926; fax: +92-21-4819018; e-mail: abdul.malik@iccs.edu, ajaz_hussain01@yahoo.com)
b) Dependence of Patagen University of Palashistan Quarter Paliston

^b) Department of Botany, University of Balochistan, Quetta, Pakistan

Marrusidins A (1) and B (2), two new labdane-type diterpenes, were isolated from the $CHCl_3$ -soluble subfraction of *Marrubium anisodon*, along with polyodonine. Their structures were assigned with the aid of ¹H- and ¹³C-NMR spectra and by COSY, HMQC, NOESY, and HMBC experiments.

Introduction. – The genus *Marrubium* (Lamiaceae) comprises 30 species which are mainly found in Europe, the Mediterranean region, and Asia [1]. One of these is *Marrubium anisodon* which is a herb growing wildly in the Balochistan Province of Pakistan [2]. It possesses tonic, aromatic, stimulant, diaphoretic, and diuretic properties [3]. Previously, diterpenes, flavonoidal glycosides, and essential oils have been reported from this species [4–6]. The ethnopharmacological and chemotaxonomic importance of the genus *Marrubium* prompted us to reinvestigate the chemical constituents of *Marrubium anisodon*. As a result, we isolated two new epimeric labdane-tye diterpenes, named as marrusidins A¹)(1) and B¹) (2) (*Fig. 1*), along with polyodonine (=(2'R,2''aS,5'R,5''aS,7''R,8''aR,8''bR)-3'',4'',5'',5''a,7'',8''a,8''b-octahydro-2''a,5''a,7''-trimethyldispiro[furan-3(2H),2'(5''H)-furan-5',6''-[6H]naphtho[1,8-bc]-furan] [7], reported for the first time in this species.

Fig. 1. Compounds 1 and 2, isolated from Marrubium anisodon¹)

1) Trivial atom numbering (IUPAC); for systematic names, see Exper. Part.

© 2010 Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. – The MeOH extract of *Marrubium anisodon* was divided into hexane-, $CHCl_3$ -, AcOEt-, BuOH-, and H_2O -soluble fractions. A subseries of chromatographic techniques applied to the $CHCl_3$ -soluble subfraction furnished the diterpenses **1**, **2**, and polyodonine.

Marrusidin A (1) was obtained as an optically active white amorphous solid. The molecular formula $C_{21}H_{30}O_6$ was deduced by HR-EI-MS, showing the molecular-ion peak at m/z 378.1340. The IR spectrum showed characteristic absorption bands at 1780 and 1765 cm⁻¹ for γ -lactones and 1250 cm⁻¹ for the MeO group. The broad-band-decoupled and DEPT ¹³C-NMR spectra showed 21 signals, comprising four Me, seven CH₂, and four CH groups, and six quaternary C-atoms (*Table*). The low-frequency signals at $\delta(C)$ 183.6 and 177.3 were assigned to γ -lactone moieties. Two O-bearing quaternary C-atoms resonated at $\delta(C)$ 93.1 and 82.9, while the O-bearing CH moieties were observed at $\delta(C)$ 101.1 and 76.4. The MeO group gave a signal at $\delta(C)$ 56.8. A

Table. ¹*H*- and ¹³*C*-*NMR Data* (400 and 100 MHz, resp.; CDCl₃) of Compounds **1** and **2**^a). δ in ppm, *J* in Hz.

CH ₂ (1)	$\delta(H)$	$\delta(C)$	\$(II)	
CH ₂ (1)		()	0(H)	$\delta(C)$
	$1.51 - 1.53 (m, H_a),$	28.7	$1.48 - 1.50 (m, H_a),$	28.2
	$1.29 - 1.30 (m, H_b)$		$1.30 - 1.32 (m, H_b)$	
CH ₂ (2)	$1.78 - 1.80 (m, H_a),$	17.9	$1.76 - 1.77 (m, H_a),$	17.8
	$1.71 - 1.73 (m, H_b)$		$1.66 - 1.69 (m, H_b)$	
CH ₂ (3)	$2.10-2.13 (m, H_a),$	28.0	$2.05 - 2.06 (m, H_a),$	27.6
	$1.42 - 1.44 \ (m, H_b)$		$1.40 - 1.43 (m, H_b)$	
C(4)	_	44.1	_	44.0
H-C(5)	2.05 (d, J = 4.5)	46.2	2.14 (d, J = 4.5)	45.7
H-C(6)	4.68(t, J = 5.4)	76.4	4.67(t, J = 5.2)	76.0
$CH_2(7)$	$2.15 - 2.17 (m, H_a),$	31.7	$2.21 - 2.23 (m, H_a),$	32.2
	$1.75 - 1.77 (m, H_{\rm b})$		$1.70 - 1.74 (m, H_{\rm b})$	
H-C(8)	2.14 - 2.15(m)	31.8	2.09 - 2.11 (m)	31.8
C(9)	_	93.1	_	93.5
C(10)	_	39.1	_	39.3
CH ₂ (11)	$2.07 - 2.08 (m, H_a)$,	29.2	$2.24 - 2.25 (m, H_a),$	29.1
	$1.86 - 1.87 (m, H_{\rm b})$		$1.87 - 1.88 (m, H_{\rm b})$	
CH ₂ (12)	$2.37 - 2.39 (m, H_a)$,	37.6	$2.33 - 2.55 (m, H_a),$	37.0
	$2.17 - 2.19 (m, H_{\rm h})$		$2.15 - 2.17 (m, H_{\rm h})$	
C(13)	_	82.9	_	84.0
CH ₂ (14)	2.41 (dd , $J = 13.4, 5.5, H_a$),	44.2	$2.55 (dd, J = 13.6, 5.6, H_a),$	43.9
	$2.21 - 2.24 (m, H_{\rm b})$		$2.18 - 2.19 (m, H_{\rm b})$	
H - C(15)	5.32 (dd, J = 9.2, 5.7)	101.1	5.36 (dd, J = 9.0, 5.8)	101.8
C(16)	_	177.3	_	177.0
Me(17)	1.04(s)	24.1	1.02(s)	23.8
Me(18)	1.27(s)	22.8	1.25 (s)	23.1
Me(19)	_	183.6	_	183.7
Me(20)	1.10 (d, J = 6.3)	16.1	0.84 (d, J = 6.0)	17.3
MeO-C(15)	3.45 (s)	56.8	3.48 (s)	57.0

detailed examination of the spectra showed that marrusidin A (1) belongs to the labdane group of diterpenes. COSY, HMQC, and HMBC experiments revealed the presence of a labdane skeleton bearing an O-functionality at C(9) and a C(19,6)lactone function. COSY and HMQC experiments revealed the presence of $CH_2(11)$ and $CH_2(12)$ groups. The HMBC spectrum showed ³J correlations of $CH_2(11)$ with C(10) and C(13). Similarly, $CH_2(12)$ showed a ³J correlation with C(9), C(14), and C(16), revealing that these two CH_2 groups should be placed between two tertiary Obearing C-atoms forming a tetrahydrofuran ring. The spectral data showed close resemblance to cyllenine A, except for the absence of a CH_2 group at C(16) revealing the presence of a C(15,16) lactone moiety. The low-frequency O-bearing CH group at $\delta(H)$ 5.32 could be ascribed to H-C(15). Its chemical shift indicated the attachment of a MeO group at C(15). This could further be confirmed through HMBC experiments, showing a ³J correlation of MeO at $\delta(H)$ 3.45 with C(15) at $\delta(C)$ 101.1. The chemical shifts, coupling constants, and NOESY experiments established the relative configuration of marrusidin A (1). In particular, the NOE between H-C(8) and Me(17) on the one hand and the lack of an NOE between H-C(5) and Me(17) on the other hand established the *trans* fusion of rings A and B. The coupling constant of H-C(6) (t, J = 5.4) pointed to an equatorial position, while the NOE cross-peaks H-C(5)/H-C(6), H-C(6)/Me(18), and H-C(5)/Me(18) indicated that these protons are on the same side (a). The NOEs $CH_2(2)/Me(17)$, $CH_2(11)/Me(17)$, and H-C(8)/Me(17) established the β configuration of these H-atoms. Moreover, the orientation of C(11) with respect to ring B was determined to be equatorial, as revealed by the NOE cross-peaks $H_b - C(11)/H_b - C(1)$ and $CH_2(11)/Me(17)$. The configuration of H - C(15) was assigned β on the basis of the NOE between H–C(15)/H_a–C(12). Its larger coupling constant provided further support for the configuration of the MeO group at C(15) [8]. The relative configuration at C(13) was assigned R^* based on NOE cross-peaks between $CH_2(14)$ and $H_a - C(1)$. On the basis of these cumulative evidences, the structure of marrusidin A (1) could be assigned as rel- $(6\beta, 8\alpha, 13R, 15R)$ -9,13-epoxy-6,15-dihydroxy-15-methoxy-labdane-16,19-dioic acid di- γ -lactone.

Fig. 2. Important NOESY $(H \leftrightarrow H)$ correlations of compounds 1 and 2^1)

Marrusidin B (2) was obtaind as an optically active white amorphous solid. The HR-EI-MS showed an M^+ peak at m/z 378.1343 corresponding to the molecular formula $C_{21}H_{30}O_6$. The IR spectrum was almost superimposable with that of 1. In so far, however, as the two compounds differ in optical rotation, these are apparently epimeric. The ¹H- and ¹³C-NMR spectra were also very similar to those of 1, except for the low-frequency shift at $\delta(H)$ 2.55 in the ¹H-NMR spectrum and high-frequency

shifts of C(13) at δ (C) 84.0 and C(17) at δ (C) 17.3 in the ¹³C-NMR spectrum (*Table*). The NOE interactions were similar to those of **1**, except for CH₂(14) now showing correlation with Me(20) instead of H_a-C(1) (*Fig.* 2). Marrusidin B (**2**) is, therefore, the C(13) epimer of **1**, and was assigned the structure of *rel*-(6 β ,8 α ,13*S*,15*S*)-9,13-epoxy-6,15-dihydroxy-15-methoxylabdane-16,19-dioic acid di- γ -lactone.

Experimental Part

General. TLC: precoated silica gel F_{254} plates (*E. Merck*, Darmstadt, Germany); detection at 254 nm and by spraying with ceric sulfate reagent. Column chromatography (CC): silica gel (SiO₂; 230–400 mesh; *E. Merck*, Darmstadt, Germany). M.p.: *Gallenkamp* apparatus; uncorrected. Optical rotations: *Jasco-DIP-360* digital polarimeter, 10 cm tube. UV Spectra: *Hitachi-UV-3200* spectrometer. IR Spectra: *Jasco-320-A* spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR and 2D-NMR Spectra: *Bruker-AMX-400* spectrometer with Me₄Si as internal standard: EI-MS: *Finnigan-MAT-12* and *-MAT-312* spectrometers; in m/z (rel. %).

Plant Material. The whole plant of *Marrubium anisodon* C. KOCH (Lamiaceae) was collected from Quetta (Pakistan) and identified by Prof. *Rasool Bakhsh Tareen*, Department of Botany, University of Balochistan, where a voucher specimen has been deposited (BU-85).

Extraction and Isolation. The shade-dried plant material (15 kg) was extracted with MeOH (3×50 l) at r.t. The extract was evaporated to yield the residue (780 g) which was divided into subfractions soluble in hexane (65 g), CHCl₃ (60 g), AcOEt (48 g), BuOH (70 g), and H₂O (41 g). The CHCl₃ subfraction was subjected to VLC, and three fractions were obtained on successive elution with hexane, CHCl₃, and MeOH, resp. The CHCl₃ eluate was subjected to CC (SiO₂, hexane, hexane/CHCl₃, CHCl₃, CHCl₃/MeOH, and MeOH in increasing order of polarity): *Fractions 1–8. Frs. 2–4* showing similar TLC profiles were combined and subjected to CC (SiO₂, hexane and hexane/AcOEt in increasing order of polarity). The elute obtained from hexane/AcOEt 9:1 gave polyodonine as colorless crystals (15 mg). Elution with hexane/AcOEt 7:3 provided a binary mixture **1/2**. Compounds **1** and **2** were obtained almost pure with lingering traces of impurities by flash chromatography (SiO₂, hexane/AcOEt 8:2). Final purification was achieved by prep. TLC: **1** (12 mg) and **2** (10 mg).

Marrusidin A (= *rel-*(2"*a*R,38,58,5'8,5"*a*R,7"5,8"*a*\$,8"*b*\$)-*Dodecahydro-5-methoxy-2*"*a*,5"*a*,7"-*trime-thyldispiro[furan-3*(2H),2'(5'H)-*furan-5'*,6'-[6H]*naphtho*[1,8-bc]*furan*]-2,2"(2"*a*H)-*dione*; **1**): Amorphous powder. M.p. 228–230°. [α]⁵₂ = -42.2 (c = 0.045, CHCl₃). IR (KBr): 2975, 1782, 1765, 1475, 1180, 1050. ¹H- and ¹³C-NMR: *Table*. EI-MS: 378 (34), 335 (10), 320 (7), 211 (100). HR-EI-MS: 378.1340 (C₂₁H₃₀O₆⁺; calc. 378.2042).

Marrusidin B (=*rel*-(2"*a*R,3R,5R,5'S,5"*a*R,7"S,8"*a*S,8"*b*S)-*Dodecahydro-5-methoxy-2"a,5"a*,7"-*trimethyldispiro*[*furan-3*(2H),2'(5'H)-*furan-5'*,6'-[6H]*naphtho*[1,8-bc]*furan*]-2,2"(2"*a*H)-*dione*; **2**): Amorphous powder. M.p. 230–232°. [*a*] $_{25}^{25}$ = +21.0 (*c* = 0.045, CHCl₃). IR (KBr): 2974, 1780, 1768, 1473, 1178, 1055. ¹H- and ¹³C-NMR: *Table*. EI-MS: 378 (36), 335 (9), 320 (6), 211 (100). HR-EI-MS: 378.1343 (C₂₁H₃₀O₆⁺; calc. 378.2042).

REFERENCES

- [1] J. D. Hooker, 'Flora of British India', Vol. IV, L. Reeve & Co., London, 1885, p. 671.
- [2] S. I. Ali, Y. J. Nasir, 'Flora of Pakistan', BCC & T Press, University of Karachi, 1990, Vol. 192, p. 53.
- [3] R. Bentley, H. Trimen, 'Medicinal Plants', Churchill, London, 1880, p. 1123.
- [4] G. Sagitdinova, M. Makhmudov, B. Tashkhadzhaev, Khim. Prir. Soedin. 1996, 1, 54.
- [5] M. Tajbakhsh, M. Khalilzadeh, A. Rineh, J. Essent. Oil Res. 2008, 20, 161.
- [6] A. Hussain, S. Perveen, A. Malik, N. Afza, L. Iqbal, R. B. Tareen, Pol. J. Chem. 2009, 83, 1329.
- [7] N. A. R. Hatam, A. Porzel, K. Seifert, *Phytochemistry* **1995**, 40, 1575.
- [8] A. Karioti, J. Heilmann, H. Skaltsa, Phytochemistry 2005, 66, 1060.

Received November 2, 2009